
ing; h, height of a projection (depth of a depression); din, inside diameter of pipe along 
a smooth section; Nu, Re, Pr, St, Nusselt, Reynolds, Prandtl, and Stanton numbers, respec- 
tively. Indices: t, turbulent number (region of turbulent transfer); m, region of molecular 
transfer; w, wall; s, outer boundary of a region; f, average value; vort, vortex region; sm, 
region of "smooth" flow (smooth pipe); in, inside; pr, profiled pipe. 
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ANALYSIS OF LONGITUDINAL VELOCITY FLUCTUATIONS ON A PLATE 

A. B. Garyaev, O. V. Dobrocheev, and V. P. Motulevich UDC 532.517.4 

It is proposed to use the equation of the second moments with a mixing path 
length determined on the basis of experimental data for the longitudinal veloc- 
ity fluctuations in a boundary layer. 

In describing a number of hydrodynamics and heat-transfer problems, not only the aver- 
aged but also the fluctuation characteristics of the flow must be known. As an illustration, 
turbulent transfer processes in apparatus of chemical technology, high-temperature energet- 
ics, space and laser engineering can be cited. The heat flux in such apparatus depends not 
only on the turbulent transfer coefficients and the mean flow parameters, but also on the fluc- 
tuation structure of the flow, since it exerts substantial influence on the rate of physico- 
chemical transformation and, consequently, on the heat and mass transfer. 

Many paper [1-4], say, are devoted to the experimental investigation of fluctuating turb- 
ulent flow structure. Mainly problems of closing the turbulent transfer equations have been 
worked out theoretically [5-9]. The description and analysis of singularities in the veloc- 
ity and temperature fluctuation distributions are limited. 

An attempt is made in this paper to compute the longitudinal velocity fluctuation pro- 
file in the boundary layer on a plate around which a gradient-free gas flows. The problem of 
determining the average velocity has been studied sufficiently well for this case. The veloc- 
ity profile is determined from the equations 

a~u ap-6- ~_.,~ o; ( i )  Ox ~ 09 
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with the boundary conditions 

g = 0  u = v = 0 ;  y - ~  u--+u~.  

The Prandtl hypothesis about the mixing path is used to close this system. The scale of 
turbulence was computed by the Simpson rule with the Van Driest correction that takes account 
of the damping effect of the wall [4]: 

v ,  = L ~ Ou . ( z )  -@-, 

, - - ~  A+~ -4-' (3) 

where K = 0.4, A+ = 26. 

Let us examine the expression for the longitudinal velocity fluctuations in the boundary 
layer that Prandtl proposed 

ag (4) 

in greater detail, where s is the mixing path length that differs in magnitude from the scale 
L used to define the turbulent viscosity. Experimental data indicate that u'v' and u '2 are 
interrelated nonlinearly. Then the nonlinear relationship between s and L follows from a 
comparison of the formulas 

- - . ' v ' = L  ~ ~ j ;  . ' -  = l ~  - , \ - N - /  (5) 

On the  bas i s  of  a g e n e r a l i z a t i o n  of  the  exper imen ta l  da ta  [1, 3, 4] ,  we propose an a lge -  
b ra i c  expres s ion  fo r  the  mixing pa th  which y i e l d s  an approximate d e s c r i p t i o n  of  the  f l u c t u a -  
t i o n  p r o f i l e  in  a v i scous  sub laye r  and the  l o g a r i t h m i c  domain of the  boundary l a y e r :  

l = / 0.89, g<0,156Re~ ~ 
0,062.Re~176 g~0 ,156  Re~176 (6) 

For a more exact determination of the fluctuations in the boundary layer, we propose to 
use a model based on the balance equation for the square of the longitudinal velocity fluc- 
tuations. This latter is derived from the Navier-Stokes equations by using the standard 
Friedman-Keller operation [7] and can be written in the boundary-layer approximation in the 
form 

) - -O~ z - Ou ~2 O / /pv Ou~2 v-~u '2 -- 
pu  --~ + 9 v  Og @ , Og P --2v'p' - -2pu 'v '  Ou 2pv Ou' Ou' 

- -  @ Og @ ( 7 ) 

I t  i s  known t h a t  in  the  l o g a r i t h m i c  bounda ry - l aye r  domain the  g e n e r a t i o n  of the  k i n e t i c  
energy of  t u r b u l e n c e  (meaning a l so  the  l o n g i t u d i n a l  v e l o c i t y  f l u c t u a t i o n s  t h a t  i n t roduce  the  
g r e a t e s t  c o n t r i b u t i o n )  i s  equal  to  i t s  d i s s i p a t i o n  [7].  I f  i t  i s  assumed, in  a d d i t i o n ,  t h a t  
the Prandtl hypothesis is valid, then the dissipative term can be approximated by the exten- 
sively utilized expression 

-72 
0u' Ou' u 

2pv. 0!] @ - 29A(v-!-aVr) - p 

where A and ~ are certain constants. 

If the coefficient of turbulent diffusion of the square of the longitudinal velocity 
fluctuations is considered proportional to VT, then by taking account of the molecular diffu- 
sion and dissipation, (7) takes the form 

[ ( o7, (8) 
- b T  § ~ @ -- a--] (~' + vw) au J + 2w,~ \ @ j 2 A o  (,~ _ ~ , ,~ )  l~ , 
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Fig. 1 Fig. 2 

Fig. i. Analysis of velocity fluctuations on a plate accord- 
ing to (7) with different values of the scale of turbulence 
(Re 4.2"i0~): i) s from (5); 2) s = 0.4y; 3) s from (3); 
t~e points are from experiment [ i]. 

Fig. 2. Analysis of fluctuations in the near-wall domain for 
different Re: i) experiment [i]; 2) experiment [3]; 3) ex- 
periment [4]; lines 4-6 from computation: 4) Re = 4.2.106; 
5) 1.2.106; 6) 5"10 s. 

where A, =, and 7 are constants, and ~T is determined from (2) and (3). The boundary condi- 
tion is that the square of the velocity fluctuation be zero at the wall and in the external 
flow. 

Such mutual velocity and fluctuation profiles in the boundary layer permitted solution 
of the problem by using a self-similar variable. Equations (i) and (7) were reduced to local- 
ly self-similar form and solved numerically in the Reynolds number range Re = 105-10 7 with 
different values of the scale of turbulence in the dissipative term. 

The results of computing the average velocities were compared with the experimental data 
presented in [8]. The difference between the computation and experiment did not exceed 5%. 
The best results on the fluctuation profile were obtained by using the scale defined by (6). 
Application of the scale in the form L = my, as well as the scale (3) and the like, such as 
utilized in [9], did not yield a satisfactory description of the fluctuation profile (Fig. i). 

Computations of the fluctuations by using a differential model are in considerably bet- 
ter agreement with the experimental data than for the computation using (4) and (6), and afford 
the possibility of describing the behavior of the fluctuations near a wall where they reach 
their maximal value (Fig. 2). The computations displayed an increase in the maximum fluctua- 
tion as the number Re grows, as is confirmed by certain experimental data as well as by computa- 
tions of the kinetic energy of turbulence [6]. The growth in the fluctuation peak can be ex- 
plained by a rise in the velocity gradient near the wall as the number Re grows, which speci- 
fies an increase in generation of the fluctuations. 

It is known that the maximum fluctuation is observed on the viscous sublayer boundary, 
more accurately in the buffer zone. The approximation of the maximum to the wall obtained in 
the computations in the coordinates y/6 corresponds to a diminution in the viscous sublayer 
thickness relative to the total boundary-layer thickness as the number Re grows. 

Since equations analogous to (8) are used in turbulent flow computations, the influence 
of the constant therein on the nature of the solution was investigated. As is disclosed, the 
coefficients in the dissipative term exert the greatest influence on the solution. An in- 
crease in the complex A~ results in a diminution in the fluctuation amplitude, where the solu- 
tions obtained for different As are almost similar (Fig. 3a). A change in the coefficient A 
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Influence of values of the constants in the dissipat- 
a) i) =A = 0.5; 2) 1.0; 3) 

for a constant A= exerts noticeable influence on the magnitude of the maximum. The growth of 
A (which corresponds to an increase in the viscous dissipation of the fluctuations) diminishes 
the height of the peak, without exerting influence on the remainder of the solution in_pxac- 
tice (Fig. 3b). A change in the coefficient y in the diffusion term within the limits ~ = 
0.25-4.0 affects the solution of (8) slightly. 

The best agreement with experimental data is obtained for the following values of the 
elements 7 = 1.0, ~ = 0.8, A = 1.25. 

NOTATION 

x, y, longitudinal and transverse coordinates; u, v, average longitudinal and transverse 
velocity components; u', v', longitudinal and transverse velocity fluctuation components; p, 
fluid density; ~, coefficient of kinematic viscosity; vT, kinematic velocity coefficient in 
the case of turbulent viscosity; L, mixing path used to calculate the turbulent viscosity; s 
mixing path relating the magnitude of the velocity fluctuation to the gradient of the ave~me - 
velocity; <, Karman constant; 8, boundary-layer thickness; Re, Reynolds criterion; v, = v~w/P, 
dynamic velocity; Tw, friction stress on the wall; A+, constant in the Van Driest formula for 
the damping factor; A, ~, X, constants in the balance equation for the square of the longi- 
tudinal component of the velocity vector. 
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STABILITY OF A LOW-TEMPERATURE HELIUM FLOW IN HEATED CHANNELS 

V. M. Eroshenko, E. V. Kuznetsov, 
and N. N. Yaroslavtseva 

UDC 621.039.534.36 

The stability of a turbulent helium flow under forced convection is investigated 
in channels with different hydraulic characteristics. 

The stability of a helium flow in heated channels must be investigated to determine the 
stable cooling conditions for different cryoenergetic apparatus in the 4-10~ temperature range 
at pressures up to 1.5 MPa. 

The spontaneous origination of wall pressure and temperature fluctuations was observed 
in fluid heating for sub- and supercritical pressures in many experimental papers [1-3], say. 

Among the different kinds of vibrational processes in fluids, the so-called density wave 
fluctuations are most widespread. Characteristic for them is the propagation of density, en- 
thalpy, and mass-flow perturbations along a channel at the fluid flow velocity, which can 
damp out or grow with time for a definite relationship between the mass-flow and the thermal 
load. 

The results of a number of theoretical and experimental investigations of such fluctua- 
tions in cryogenic systems cooled by supercritical-pressure helium have recently been pub- 
lished. The Nyquist frequency criterion based on the principle of an argument was used in [4] 
to analyze stability, and permitted estimation of a number of versions of cooling with the 
thermodynamic properties of the gas taken into account. 

On the basis of a simplified model using an approximate description of the thermodynamic 
properties of helium in the near-critical region, an equation was obtained in [5] for the sta- 
bility boundary in two dimensionless parameters ~d = API/AP2 is the ratio of the pressure 
drops in the input and output chokes, and R = v2/v I is the degree of gas expansion. The pres- 
sure over the channel length was assumed constant in the computations. 

The boundary of the beginning of the origination of vibrations by using analogous cri- 
teria was constructed earlier on the basis of experimental investigations [I]: the relative 
hydraulic drag 

" ~ =  A P l q - A P I ~  ( 1 )  

AP~ + AP 2 

a n d  t h e  d e g r e e  o f  e x p a n s i o n  R = ( v  2 - v l ) / v  1. H e r e ,  AP 1 i s  t h e  p r e s s u r e  d r o p  a t  t h e  i n p u t  
throttle; APIK is the channel hydraulic drag between the input throttle and the section with 
the pseudocritical temperature Tm of the flow; AP2K is the channel hydraulic drag between the 
section with temperature Tm and the output throttle, and AP 2 is the hydraulic drag of the out- 
put throttle. 

A disagreement between the results of a computation [4] and the stability boundary ob- 
tained on the basis of experiments was noted in [I]. A discrepancy is also noticeable in com- 
paring the results of computations [5] and test data, especially in the domain of small values 
of ~. 
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